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Lecture 7: Nowhere-zero integer flows

A weight of a graph G is a function f : E(G) ! � that assigns to every edge an element of an Abelian group

�. An orientation of a graph is assignment to each edge one of the two possible directions. By assigning an

orientation D of a graph G, we obtain a directed graph, which we denote by D(G). We will treat an orientation

D as a function, for which the following holds:

D(u, v) =

⇢
1, orientation of the edge uv is from u to v

�1, otherwise.

Now observe that for every edge uv, it holds D(u, v) = �D(v, u).

A �-flow or just a flow of graph G is ordered pair (D, f), where D is an orientation and f is a weight of the

graph G, which satisfy the Kirchho↵ law:

8v 2 V (G) :

X

u2N(v)

D(v, u)f(vu) = 0, (1)

where N(v) denotes the set of neighbours of v.

1: Find a flow using Z. Can you find a flow, where 0 is not used and all values are positive?

Solution: It can be done just with 1 and 2.

For a weight f of G, the support is the set of edges e 2 E(G), for which f(e) 6= 0. Usually, we denote the

support by supp(f). A flow (D, f) of a graph G is nowhere-zero, if supp(f) = E(G). A flow (D, f) is

• an integer flow if f maps into (Z,+)

• a k-flow if f maps into Z and |f(e)| < k for every edge e 2 E(G).

If every edge of G has a positive weight of an integer flow f , then f is a positive flow. A flow number (G) of a

graph G, is the smallest number k, for which G admits nowhere-zero k-flow. If such k does not exists, then we

define (G) = 1.
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2: Prove that the following holds:

1. Graphs with bridges do not admit nowhere-zero flows.

Solution: Kirho↵ law will be violated.

2. If a graph admits a nowhere-zero k-flow, then for every h � k, it admits a nowhere-zero h-flow.

Solution: By definition, nowhere-zero k-flow is also nowhere-zero h-flow if h � k.

3. Let (D, f) a (nowhere-zero) flow of a graph G and let F✓(G) be some subset of edges of G. Let DF be the

orientation, which we get from D by changing the orientations of all edges of F . Define a weight fF of G in the

following way:

fF (e) =

⇢
f(e), e 62 F

�f(e), e 2 F.

Then (DF , fF ) is also (nowhere-zero) flow of G.

Solution: Consider one edge at a time. When one edge is reversed and its weight is
also reveresed, the contribution is staying the same.

4. If a graph G admits a nowhere-zero �-flow (k-flow) for a given orientation, then it also admits a nowhere-

zero �-flow (k-flow) for any orientation. In particular, if a graph admits nowhere-zero k-flow, then it also admits

a positive k-flow.

Solution: Direct consequence of the previous observation, where we can reorient any
edges we want and the existence of a nowhere-zeroflow is preserved.

5. For a given integer flow of a graph G, let H be the subgraph of G induced by the edges of odd weights.

Then, H is an even graph. In particular, from here it follows that a graph admits nowhere-zero 2-flow, if and

only if it is an even graph.

Solution: Odd number of odd numbers sum to an odd number, which is not zero.
Hence the edges with odd weight must induce a graph, where every vertex has even
degree.

Remember that nowhere-zero 2-flow simply assigns to every edge 1 or -1. If graph is not
even, it cannot have nowhere-zero 2-flow. If it is even, it has an Eulerian orientation.
There we can assign each edge weight 1 and it will be a flow. By previous observation,
at least one orientation will do.

Theorem 1 (Tutte). A graph admits nowhere-zero k-flow if and only if it admits nowhere-zero Zk-flow.
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1 Flow polynomials

Recall P (G, k) is a chromatic polynomial.

For a fixed orientation of G, F (G, k), the number of di↵erent nowhere-zero �-flows is a polynomial of k, with

|�| = k. It will also be a polynomial.

Proposition 2. Function F (G, k) has the following properties:

(1) F (G, k) = 0, if G is just an edge;

(2) F (G, k) = k � 1, if G is just a loop;

(3) F (G, k) = (k � 1)F (G� e, k), if e 2 E(G) is a loop;

(4) F (G, k) = F (G/e, k)� F (G� e, k), if e 2 E(G) is not a loop.

3: Prove the proposition.

Solution:

(1) there cannot be any flow

(2) any non-zero will work

(3) Loop can be assigned anything of the k � 1 non-zero options

(4) F (G, k) = F (G/e, k) � F (G � e, k), if e 2 E(G) is not a loop. We look at graph
G/e and copy the flow to G. Endpoints of e need rebalancing using e. Main issue
may be if there is no need for any rebalancing on e and it would get zero, which
is not allowed. But that corresponds to F (G� e, k).

From the above proposition, by induction on the number of edges of the graphs, it easily follows that F (G, k)

is a polynomial depending only of G and k (and not of �). This gives us the next two interesting consequences.

Corollary 3. Let G be a graph with an arbitrary orientation D, and let �1, �2 be Abelian groups of order k.
Then, the number of nowhere-zero �1-flows of G is equal to the number of nowhere-zero �2-flows of G.

In particular, from the above one, we obtain the following consequence.

Corollary 4. Let G be a graph and let �1 and �2 be Abelian groups of order k. Then, G admits nowhere-
zero �1-flow if and only if it admits nowhere-zero �2-flow.
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Proposition 5. A cubic graph admits a nowhere-zero 3-flow if and only if it is bipartite.

4: Prove the proposition. Hint: Try nowhere-zero Z3-flow. What happens when reversing an edge with its

weight?

Solution:

Proof. Suppose G is a cubic graph that admits a nowhere-zero 3-flow. By Tutte’s
theorem, we can assume that G admits a nowhere-zero Z3-flow. In such a flow, we may
assume that every edge has assigned value 1, and then in order to have satisfied the
Kirchho↵ law, we must have all three edges of any vertex v directed either all out of
v or directed all toward v. In the former case put v on the left side, and in the latter
case put v on the right side, and this is how we obtain the bipartition of G.

If G is a cubic bipartite graph, then direct every edge from the left partition toward
the right one and put a value 1 on it, and we obtain a nowhere-zero Z3-flow.

Proposition 6. A cubic graph admits a nowhere-zero 4-flow if and only if it is 3-edge-colorable.

5: Prove the proposition: Hint: Try nowhere-zero Z2 ⇥ Z2-flows, what values may appear on edges around 1

vertex?

Solution:

Proof. A cubic graph admits nowhere-zero 4-flow if and only if it admits nowhere-
zero Z2 ⇥ Z2-flows by Corollary 4 and Tutte’s theorem. Now, note that in a cubic
graph with a nowhere-zero Z2⇥Z2-flow, the three edges at any vertex must be present
all three elements (0, 1), (1, 0), (1, 1) of Z2 ⇥ Z2 in order to satisfy the Kirchho↵ law.
Considering these three values as colors we obtain that a cubic graph admits a nowhere-
zero Z2 ⇥ Z2-flow if and only if it is 3-edge-colorable. Now, by these two equivalences
the claim follows easily.
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2 Flows and colorings

A nowhere-zero integer k-flow of a plane graph induces k-coloring of the dual graph, and vice versa. So somehow

it turns that the theory of flows is a natural extension of planar map colorings.

Theorem 7 (Tutte). A plane graph G is k-face-colorable, if and only if G admits a nowhere-zero k-flow.

Proof. ()). Let � be a k-face-coloring of G with colors from the set {0, 1, . . . , k � 1}. Define an orientation D

and a weight function f in the following. Let e = uv 2 E(G) be an arbitrary edge from G and let F1 and F2 be

the faces incident with e. Now, orient e in such a way that the face with the bigger color is on its right side,

and for its weight just let f(e) = |�(F1)� �(F2)|.

6: Show that (D, f) is a nowhere-zero k-flow of G.

Solution: We claim that (D, f) is a nowhere-zero k-flow of G. Let v be an arbitrary
vertex of G of degree d. Denote by v0, v1, . . . , vd�1 the neighbour of v in the order as
their appear when we go around v in the clockwise direction, and denote by ei the edge
vvi, here we index modulo d. Let Fi be the face which contains the subwalk eivei+1

i = 0, . . . , d� 1. Then,

D(v, vi)f(vvi) = �(Fi)� �(Fi�1).

Summing all this equalities, we obtain

d�1X

j=0

D(v, vj)f(vvj) = 0.

And, this is the condition (1) and since 0 < f(e) < k for every edge e 2 E(G), the pair
(D, f) is a nowhere-zero k-flow.

((). Suppose G admits a nowhere-zero k-flow (D, f). We will construct a desired coloring � : F (G) !
{0, 1, . . . , k � 1} in the following way. First we choose one face and we color it by one of these colors. Next, we

repeat the following procedure until all faces are colored: choose one face Fu that is not colored but that has a

neighbouring face that is colored, say Fc, and let e be the edge that border both faces. We color Fu by a color

�(Fu) so that the following hold:

�(Fu) ⌘ �(Fc)± f(e) (mod k) (2)

with operation
0
+

0
, when Fc is on the right side of the edge e and with operation

0�0
otherwise.

In what follows we will show that � is well defined. And, since f is a nowhere-zero k-flow, we will obtain that

� is proper k-face-coloring of G.

7: Let F0 be a non-colored face that is adjacent to two colored faces Fa and Fb and let ea be an edge between

F0 and Fa, and similarly, eb be an edge between F0 in Fb. We may assume that F0 is on the left side of the

edge ea and on the right side of the the edge eb. Thus, it will be enough to show that

�(Fa) + f(ea) ⌘ �(Fb)� f(eb) (mod k). (3)

Idea: show that reaching Fb from in another way Fa gives the same color to F0. Use that sum of wights of

edges in a cut is 0.

Solution: It is not hard to observe that there exists an edge-cut X = {e0 =
ea, e1, . . . , ed�1 = eb}, where ei and ei�1 belong to a same face Fi for every i = 0, . . . , d�1
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(index modulo d). Then, F1 = Fa and Fd�1 = Fb. Notice that the so-defined coloring
stays transparent regarding the edge-flip operation, i.e. it stays unchanged by reversing
the orientation of any edge e and reassigning its weight to �f(e). So, we can assume
that Fi is always on the left side of ei. Then, by the Kirchho↵ law, we have

d�1X

i=0

f(ei) = 0 (4)

and for i = 1, . . . , d� 2

�(Fi+1) ⌘ �(Fi)� f(ei) (mod k). (5)

Summing up all these identities from (5), we infer

�(Fd�1) ⌘ �(F1)� f(e1)� f(e2)� · · ·� f(ed�2) (mod k),

and from here, (5) gives us

�(Fd�1) ⌘ �(F1) + f(e0) + f(ed�1) (mod k).

Finally observe that the last identity is equivalent to (3). And, this completes the
proof.

Now we derive proof the Heawood theorem about 3-colorings of even triangulation as a side results.

Theorem 8 (Heawood). A planar triangulation with every vertex of even degree is 3-colorable.

8: Prove Heawood’s theorem.

Solution:

Proof. Let G be a planar triangulation with very vertex being of even degree. Then
G is 3-colorable, if and only if the dual G⇤ is 3-face colorable. Notice that G⇤ is a
cubic graph, and since every face is even, we conclude that it is a bipartiete graph. By
Proposition 5, it has a nowhere-zero 3-flow, and by the last theorem we conclude that
G⇤ is 3-face colorable, which establishes the theorem.

cbna by Riste Škrekovski and Bernard Lidický
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3 Tutte’s conjectures

The previous result that dualize the concepts of face-coloring planar graphs and flows on planar graphs, moti-

vated Tutte to state four interesting conjectures. The first two conjectures of Tutte consider the upper bound

of the flow number.

k-Flow Conjecture. There exists an integer k such that every bridgless cubic graph admits nowhere-zerok-flow.

5-Flow Conjecture. Every graph without bridges admits nowhere-zero 5-flow.

The first conjecture was independently solved by Kilpatrick and Jaeger. Both of the showed that the upper

bound is k = 8 of the flow number. Later Seymour proved that 6 is also upper bound, i.e. (G)  6 for every
graph G without bridges.

The 5-Flow Conjecture is generalization of the 5-Color Theorem and we know that the Petersen graph does

not admit nowhere-zero 4-flow. So in this conjecture, we cannot replace 5 by 4 but the next Tutte conjecture

consider 4-flows. First note that we can restate the Four Color Theorem as - Every bridgeless planar graph
admits a nowhere-zero 4-flow. The Tutte guess is that we can go out of planarity with this. Beside the Hadwiger

conjecture, it is the strongest generalization of the Four Color Theorem.

4-Flow Conjecture. Every bridgeless graph that does not contain the Petersen graph as a minor admits a
nowhere-zero 4-flow.

Note that the above conjecture restricted to the cubic graphs is precisely Tutte’s about 3-edge-colorings of

Petresen-minor-free cubic graphs.

The last Tutte conjecture generalize the Grötzsch theorem. If we dualise this theorem, it says that every planar
graph without 1-edge-cuts and 3-edge-cuts is 3-face-colorable. And, the Tutte conjecture extends this statement

out of the plane.

3-Flow Conjecture. Every bridgeless graph without 3-edge-cuts admits a nowhere-zero 4-flow.
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