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k Lecture 7: Nowhere-zero integer flows

A weight of a grap@ a functio—> I" that assigns to every edge an element of an Abelian group
I'. An orientation of & graph is assignmentto each edge one of the two possible directions. By assigning an

orientation D of a graph G, we obtain a directed graph, which we denote by D(G). We will treat an orientation

D a(; a function, for which the following holds: N\ DI ) Rﬂ/\ {71’(
Dum " D(u,v) = 1, orientation of the edge uv is from w to g~
D_N Y= -1, otherwise. A /]
m A TN / w

Now observe that for every edge uv, it holds D(u,v) = —D(v,u)=~| *4,

A T-flow or just a flow of graph G is ordered pair (D, f), where D is an orientation and f is a weight of the
graph G, which satisfy the Kirchhoff law:
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where N (v) denotes the set of neighbours of v.

1: Find a flow using Z. Can you find a flow, where 0 is not used and all values are positive? %
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For a weight f of G, the support is the set of edges e € E(G), for which f(e) # 0. Usually, we denote the
support by supp(f). A flow (D, f) of a graph G is nowhere-zero, if supp(f) = E(G). A flow (D, f) is

e an integer flow if f maps into (Z, ”
e a k-flowif f maps into Z and |f(e)| < k for every edge e € E(G).

If every edge of G has a positive weight of an integer flow f, then f is a positive flow. A flow number k(G) of a
graph G, is the smallest number k, for which G admits nowhere-zero k-flow. If such k£ does not exists, then we

define k(G) = oc.
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2: Prove that the following holds: J
\(
1. Graphs with bridges do not admit nowhere-zero flows.
f"“"“"w 2 f Dln x(xn) = 0O
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2. If a graph admits a nowhere-zero k-flow, then for every h > k, it admits a nowhere-zero h-flow. P b\
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3. Let (D, f) a (nowhere-zero) flow of a graph G and let FC(G) be some subset of edges of G. Let Dp be the
orientation, which we get from D by changing the orientations of all edges of F'. Define a weight fr of G in the
following way:

_§ fle), egF
fF(e)—{ “fle), eeF

Then (Dp, fr) is also (nowhere-zero) flow of G.
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4. If a graph G admits a nowhere-zero I'-flow (k-flow) for a given orientation, then it also admits a nowhere-
zero I'-flow (k-flow) for any orientation. In particular, if a graph admits nowhere-zero k-flow, then it also admits
a positive k-flow.
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5. For a given integer flow of a graph G, let H be the subgraph of G induced by the edges of odd weights.

Then, H is an even graph. In particular, from here it follows that a graph admits nowhere-zero 2-flow, if and
only if it is an even graph.
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Theorem 1 (Tutte). A graph admits nowhere-zero k-flow if and only if it admits nowhere-zero Z-flow.
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1 Flow polynomials

Recall P(G, k) is a chromatic polynomial.

For a fixed orientation of G, F(G, k), the number of different nowhere-zero I'-flows is a polynomial of k, with
IT'| = k. It will also be a polynomial.

Proposition 2. Function F(G, k) has the following properties:

0, if G is just an edge; ’//c;

AL Mun avapy

(1) F(G. k)=
(2) F(G,k) =k — 1, if G is just a loop; Q .
(3) F(G,k) = (k— 1)F(G — e,k), if e € E(G) is a loop;
(1) F(G.k) = F(GJe,k) — F(G — e,k), if e € E(G) is not a loop.
3: Prove the proposition. {711; b\’g T Q/Z
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From the above proposition, by induction on the number of edges of the graphs, it easily follows that F(G, k)
is a polynomial depending only of G and k (and not of I'). This gives us the next two interesting consequences.

[ Fow

Corollary 3. Let G be a graph with an arbitrary orientation D, and let T'1, Ty be Abelian groups of order k.
Then, the number of nowhere-zero I'1-flows of G is equal to the number of nowhere-zero I's-flows of G.

In particular, from the above one, we obtain the following consequence.

Corollary 4. Let G be a graph and let I'y and Iy be Abelian groups of order k. Then, G admits nowhere-
zero I'y-flow if and only if it admits nowhere-zero I'y-flow.
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Proposition 5. A cubic graph admits a nowhere-zero 3-flow if and only if it is bipartite. L"‘ CoLoa 3 L

0
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4: Prove the proposition. Hint: Try nowhere-zero Zs-flow. What happens when reversing an edge with its
weight? - L
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Proposition 6. A cubic graph admits a nowhere-zero 4-flow if and only if it is 3-edge-colorable.

5: Prove the proposition: Hint: Try nowhere-zero Zo X Zs-flows, what values may appear on edges around 1
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2 Flows and colorings
kA

A nowhere-zero integer k-flow of a plane graph induces k-coloring of the dual graph, and vice versa. So somehow
it turns that the theory of flows is a natural extension of planar map colorings.

Theorem 7 (Tutte). A plane graph G is k-face-colorable, if and only if G admits a nowhere-zero k-flow.

Proof. (=). Let A be a k-face-coloring of G with colors from the set {0,1,...,k — 1}. Define an orientation D
and a weight function f in the following. Let e = uwv € E(G) be an arbitrary edge from G and let F} and F» be
the faces incident with e. Now, orient e in such a way that the face with the bigger color is on its right side,
and for its weight just let f(e) = [A(F1) — A(F)]. T
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6: Show that (D, f) is a nowhere-zero k-flow of G. ¢ .
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(«<). Suppose G admits a nowhere-zero k-flow (D, f). We will construct a desired coloring A : F(G) —
{0,1,...,k — 1} in the following way. First we choose one face and we color it by one of these colors. Next, we
repeat the following procedure until all faces are colored: choose one face F), that is not colored but that has a
neighbouring face that is colored, say F., and let e be the edge that border both faces. We F, by a color
A(F,) so that the following hold:

ANFy) = AMFe) £ f(e) (mod k)

with operation '+, when F is on the right side of the edge e and with operation '—' ottre + g ¢ )
In what follows we will show that A is well defined. And, since f is a nowhere-zero k-flow, wawill obtain that
A is proper k-face-coloring of G. \% (_g)

7: Let Fj be a non-colored face that is adjacent to two colored faces F, and Fj and let e, be an edge between
Fy and F,, and similarly, e; be an edge between Fy in Fp. We may assume that Fj is on the left side of the
edge e, and on the right side of the the edge e,. Thus, it will be enough to show that

A(Fa) + fea) = A(Fp) — f(ep)  (mod k). (3)
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Now we derive proof the Heawood theorem about 3-colorings of even triangulation as a side results.
Theorem 8 (Heawood). A planar triangulation with every vertex of even degree is 3-colorable.
8: Prove Heawood’s theorem.
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3 Tutte’s conjectures

The previous result that dualize the concepts of face-coloring planar graphs and flows on planar graphs, moti-
vated Tutte to state four interesting conjectures. The first two conjectures of Tutte consider the upper bound
of the flow number.

k-Flow Conjecture. There exists an integer k such that every bridgless cubic graph admits nowhere-zerok-flow.
5-Flow Conjecture. Fvery graph without bridges admits nowhere-zero 5-flow.

The first conjecture was independently solved by Kilpatrick and Jaeger. Both of the showed that the upper
bound is k£ = 8 of the flow number. Later Seymour proved that 6 is also upper bound, i.e. xK(G) < 6 for every
graph G without bridges.

The 5-Flow Conjecture is generalization of the 5-Color Theorem and we know that the Petersen graph does
not admit nowhere-zero 4-flow. So in this conjecture, we cannot replace 5 by 4 but the next Tutte conjecture
consider 4-flows. First note that we can restate the Four Color Theorem as - Every bridgeless planar graph
admits a nowhere-zero 4-flow. The Tutte guess is that we can go out of planarity with this. Beside the Hadwiger
conjecture, it is the strongest generalization of the Four Color Theorem.

4-Flow Conjecture. Fvery bridgeless graph that does not contain the Petersen graph as a minor admits a
nowhere-zero 4-flow.

Note that the above conjecture restricted to the cubic graphs is precisely Tutte’s about 3-edge-colorings of
Petresen-minor-free cubic graphs.

The last Tutte conjecture generalize the Grétzsch theorem. If we dualise this theorem, it says that every planar
graph without 1-edge-cuts and 3-edge-cuts is 3-face-colorable. And, the Tutte conjecture extends this statement
out of the plane.

3-Flow Conjecture. Every bridgeless graph without 3-edge-cuts admits a nowhere-zero 4-flow.
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